Incipient Fault Feature Extraction of Rolling Bearings Using Autocorrelation Function Impulse Harmonic to Noise Ratio Index Based SVD and Teager Energy Operator

نویسندگان

  • Kai Zheng
  • Tianliang Li
  • Bin Zhang
  • Yi Zhang
  • Jiufei Luo
  • Xiangyu Zhou
چکیده

The periodic impulse feature is the most typical fault signature of the vibration signal from fault rolling element bearings (REBs). However, it is easily contaminated by noise and interference harmonics. In order to extract the incipient impulse feature from the fault vibration signal, this paper presented an autocorrelation function periodic impulse harmonic to noise ratio (ACFHNR) index based on the SVD-Teager energy operator (TEO) method. Firstly, the Hankel matrix is constructed based on the raw vibration fault signal of rolling bearing, and the SVD method is used to obtain the singular components. Afterwards, the ACFHNR index is employed to measure the abundance of the periodic impulse fault feature for the singular components, and the component with the largest ACFHNR index value is extracted. Moreover, the properties of the ACFHNR index are demonstrated by simulations and the full life cycle of the experiment, showing its superiority over the traditional kurtosis and root mean square (RMS) index for extracting and detecting incipient periodic impulse features. Finally, the Teager energy operator spectrum of the extracted informative signal is gained. The simulation and experimental results indicated that the proposed ACFHNR index based method can effectively detect the incipient fault feature of the rolling bearing, and it shows better performance than the kurtosis and RMS index based methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings

The properties of the time domain parameters of vibration signals have been extensively studied for the fault diagnosis of rolling element bearings (REBs). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are the most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters, problems still exi...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

Weak Fault Diagnosis of Wind Turbine Gearboxes Based on MED-LMD

In view of the problem that the fault signal of the rolling bearing is weak and the fault feature is difficult to extract in the strong noise environment, a method based on minimum entropy deconvolution (MED) and local mean deconvolution (LMD) is proposed to extract the weak fault features of the rolling bearing. Through the analysis of the simulation signal, we find that LMD has many limitatio...

متن کامل

Incipient Fault Diagnosis of Rolling Bearings Based on Impulse-Step Impact Dictionary and Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique

The periodical transient impulses caused by localized faults are sensitive and important characteristic information for rotating machinery fault diagnosis. However, it is very difficult to accurately extract transient impulses at the incipient fault stage because the fault impulse features are rather weak and always corrupted by heavy background noise. In this paper, a new transient impulse ext...

متن کامل

Voice Activity Detection Based on Auto-Correlation Function Using Wavelet Transform and Teager Energy Operator

In this paper, a new robust wavelet-based voice activity detection (VAD) algorithm derived from the discrete wavelet transform (DWT) and Teager energy operation (TEO) processing is presented. We decompose the speech signal into four subbands by using the DWT. By means of the multi-resolution analysis property of the DWT, the voiced, unvoiced, and transient components of speech can be distinctly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017